martes, 9 de abril de 2013

CURVA KEELING


La Curva Keeling es una gráfica que muestra los cambios en la concentración de dióxido de carbono en la atmósfera desde 1958. Se basa en las mediciones continuas tomadas en el observatorio de Mauna Loa en Hawái bajo la supervision de Charles David Keeling. Estas mediciones fueron la primera evidencia de los rápidos incrementos en los niveles de dióxido de carbono en la atmósfera.1







Charles David Keeling, de la Scripps Institution of Oceanography en la Universidad de California San Diego, fue la primera persona en efectuar mediciones regulares de las concentraciones de dióxido de carbono atmosférico en el Polo Sur y en Hawái desde 1958 en adelante.2
Antes de Keeling se pensaba que la concentración de dióxido de carbono en la atmósfera estaba afectada por una constante variabilidad. Keeling perfeccionó las técnicas de medición y observó variaciones diurnas, estacionales y también un incremento anual que tenía una correlación con los combustibles fósiles quemados en ese año. En el artículo que le hizo famoso observaba que “en el Polo Sur la tasa de incremento de la concentración es casi la esperada por la combustión de combustibles fósiles”.3
Mediciones en Mauna Loa
Debido a recortes económicos hacia 1965, Keeling tuvo que abandonar las mediciones en el Polo Sur, pero mantuvo las de Mauna Loa.4
Las mediciones efectuadas en Mauna Loa muestran un incremento mantenido en la concentración media del CO2 desde 315 partes por millón en volumen (ppmv) en 1958 hasta 396 ppmv en mayo de 2012.5 6 Este incremento en el CO2 atmosférico se debe fundamentalmente a la quema de combustibles fósiles y se ha ido acelerando en los últimos años. Como el dióxido de carbono es un gas de efecto invernadero esto tiene unas implicaciones muy importantes para el calentamiento global
Aunque Mauna Loa no es un volcán activo, Keeling y sus colaboradores efectuaron las mediciones por encima de la capa de inversión térmica para minimizar la contaminación local y los datos fueron normalizados estadísticamente.7 Las mediciones en otras ubicaciones aisladas han confirmado la tendencia a largo plazo mostrada por la Curva de Keeling,8 aunque ningún otro sitio tiene un registro tan amplio como el de Mauna Loa.9


Variación estacional de la concentración de dióxido de carbono en Mauna Loa 2011
La Curva de Keeling muestra una variación de unos 5 ppmv cada año correspondiente al consumo estacional de CO2 por la vegetación. La mayor parte de la vegetación está en el hemisferio Norte porque es donde se localiza la mayor superficie de tierra emergida. El nivel disminuye desde la primavera del hemisferio Norte porque el crecimiento de las plantas mediante la fotosíntesis toma dióxido de carbono de la atmósfera y vuelve a aumentar en el otoño del hemisferio Norte cuando las plantas mueren o pierden las hojas y sueltan el dióxido de carbono a la atmósfera.10
Debido a la importancia de los hallazgos de Keeling la NOAA (National Oceanic and Atmospheric Administration) comenzó en 1970 a monitorizar los niveles de CO2 en todo el mundo. Actualmente se efectuan mediciones en unos 100 lugares en todo el mundo.1
Las mediciones de dióxido de carbono en el Observatorio de Mauna Loa se efectuan con un tipo de espectrómetro de infrarrojos no dispersivo.11
Keeling falleció en 2005. La supervisión del proyecto de mediciones fue continuada por su hijo Ralph Keeling, profesor de ciencia del clima en la Scripps Institution.12
Mediciones históricas
Cuando nieva queda aire atrapado en los copos. En los polos y en otras regiones la nieve nunca se funde y termina formando hielo y ese aire queda atrapado en pequeñas burbujas. Normalmente en cada kilogramo de hielo quedan atrapados 100 militros de aire. De este modo el hielo polar funciona como un “museo del aire” proporcionando información de la composición de la atmósfera hasta medio millón de años atrás.
Las técnicas de extracción y análisis de gases proporcionan las concentraciones de CO2 anteriores a 1950. Además suministran las concentraciones posteriores a 1950 y confirman las medidas de Keeling.
Las concentraciones de CO2 medidas en el hielo del glaciar Law Dome (Antártida) muestran concentraciones constantes entre 270 y 280 ppm durante los 1 000 años anteriores al siglo XVIII cuando comenzaron a crecer. En 2012 la concentración alcanzó 396 ppm, lo que supone un incremento del 41%.
Los registros de hielo muestran que las concentraciones de CO2 no tienen precedente en los últimos 650 000 años.13
Protocolo de Kioto
El Protocolo de Kioto de la convención marco de las Naciones Unidas sobre el cambio climático se firmó el 11 de diciembre de 1997 y entró en vigor el 16 de febrero de 2005.
Artículo 3 1. Las Partes incluidas en el anexo I se asegurarán, individual o conjuntamente, de que sus emisiones antropógenas agregadas, expresadas en dióxido de carbono equivalente, de los gases de efecto invernadero enumerados en el anexo A no excedan de las cantidades atribuidas a ellas, calculadas en función de los compromisos cuantificados de limitación y reducción de las emisiones consignados para ellas en el anexo B y de conformidad con lo dispuesto en el presente artículo, con miras a reducir el total de sus emisiones de esos gases a un nivel inferior en no menos de 5% al de 1990 en el período de compromiso comprendido entre el año 2008 y el 2012. ”14
La curva de Keeling muestra que no se ha producido esa reducción del 5% entre 2008 y 2012 sino que la concentración de dióxido de carbono ha seguido creciendo.
Orígenes antropogénicos
Correlación entre las emisiones de carbono antropogénicas y la concentración de dióxido de carbono de 1750 a 2010
El CO2 antropogénico proviene de la quema de combustibles fósiles, cambios en el uso de la tierra como la deforestación, y la fabricación de cemento.
Según Houghton and Hackler los cambios en el uso de la tierra entre 1850 y 2000 resultaron en una transferencia neta de 154 PgC hacia la atmósfera. Durante el mismo período se liberaron 282 PgC debido a la quema de combustibles fósiles y 5,5 PgC adicionales se emitieron debido a la fabricación de cemento. Esto suma 154 + 282 + 5,5 = 441,5 PgC, de los cuales 282/444.1 = 64% es debido a la quema de combustibles fósiles.

EFECTO INVERNADERO


Se denomina efecto invernadero al fenómeno por el cual determinados gases, que son componentes de la atmósfera planetaria, retienen parte de la energía que la superficie planetaria emite por haber sido calentada por la radiación estelar. Afecta a todos los cuerpos planetarios rocosos dotados de atmósfera. Este fenómeno evita que la energía recibida constantemente vuelva inmediatamente al espacio, produciendo a escala planetaria un efecto similar al observado en un invernadero. En el sistema solar, los planetas que presentan efecto invernadero son Venus, la Tierra y Marte.
De acuerdo con la mayoría de la comunidad científica, el efecto invernadero se está viendo acentuado en la Tierra por la emisión de ciertos gases, como el dióxido de carbono y el metano, debido a la actividad humana.
No obstante lo que se señala aquí, el aire forma en la troposfera una mezcla de gases bastante homogénea a una temperatura y presión determinadas, hasta el punto de que su comportamiento es el equivalente al que tendría si estuviera compuesto por un solo gas.1
Balance energético de la Tierra
Balance anual de energía de la Tierra desarrollado por Trenberth, Fasullo y Kiehl de la NCAR en 2008. Se basa en datos del periodo de marzo de 2000 a mayo de 2004 y es una actualización de su trabajo publicado en 1997. La superficie de la Tierra recibe del Sol 161 w/m2 y del Efecto Invernadero de la Atmósfera 333w/m², en total 494 w/m2,como la superficie de la Tierra emite un total de 493 w/m2 (17+80+396), supone una absorción neta de calor de 0,9 w/m2, que en el tiempo actual está provocando el calentamiento de la Tierra.
En la atmósfera el mantenimiento del equilibrio entre la recepción de la radiación solar y la emisión de radiación infrarroja devuelve al espacio la misma energía que recibe del Sol. Esta acción de equilibrio se llama balance energético de la Tierra y permite mantener la temperatura en un estrecho margen que posibilita la vida (2 )
En un período suficientemente largo el sistema climático debe estar en equilibrio, la radiación solar entrante en la atmósfera está compensada por la radiación saliente. Pues si la radiación entrante fuese mayor que la radiación saliente se produciría un calentamiento y lo contrario produciría un enfriamiento.3 Por tanto, en equilibrio, la cantidad de radiación solar entrante en la atmósfera debe ser igual a la radiación solar reflejada saliente más la radiación infrarroja térmica saliente. Toda alteración de este balance de radiación, ya sea por causas naturales u originado por el hombre (antropógeno), es un forzamiento y supone un cambio de clima y del tiempo asociado.4
Los flujos de energía entrante y saliente interaccionan en el sistema climático ocasionando muchos fenómenos tanto en la atmósfera, como en el océano o en la tierra. Así la radiación entrante solar se puede dispersar en la atmósfera o ser reflejada por las nubes . La superficie terrestre puede reflejar o absorber la energía solar que le llega. La energía solar de onda corta se transforma en la Tierra en calor. Esa energía no se disipa, se encuentra como calor sensible o calor latente, se puede almacenar durante algún tiempo, transportarse en varias formas, dando lugar a una gran variedad de tiempo y a fenómenos turbulentos en la atmósfera o en el océano. Finalmente vuelve a ser emitida a la atmósfera como energía radiante de onda larga.3 Un proceso importante del balance de calor es el efecto albedo, por el que algunos objetos reflejan más energía solar que otros. Los objetos de colores claros, como las nubes o la superficies nevadas, reflejan más energía, mientras que los objetos oscuros absorben más energía solar que la que reflejan. Otro ejemplo de estos procesos es la energía solar que actúa en los océanos, la mayor parte se consume en la evaporación del agua de mar, luego esta energía es liberada en la atmósfera cuando el vapor de agua se condensa en lluvia.5
La Tierra, como todo cuerpo caliente superior al cero absoluto, emite radiación térmica, pero al ser su temperatura mucho menor que la solar, emite radiación infrarroja por ser un cuerpo negro. La radiación emitida depende de la temperatura del cuerpo. En el estudio del NCAR han concluido una oscilación anual media entre 15,9 °C en julio y 12,2 °C en enero compensando los dos hemisferios, que se encuentran en estaciones distintas y la parte terrestre que es de día con la que es de noche. Esta oscilación de temperatura supone una radiación media anual emitida por la Tierra de 396 W/m2.6
La energía infrarroja emitida por la Tierra es atrapada en su mayor parte en la atmósfera y reenviada de nuevo a la Tierra. Este fenómeno se llama Efecto Invernadero y garantiza las temperaturas templadas del planeta.7 Según el estudio anterior de la NCAR, el Efecto Invernadero de la atmósfera hace retornar nuevamente a la Tierra 333 W/m2.8
Globalmente la superficie de la Tierra absorbe energía solar por valor de 161 w/m2 y del efecto invernadero de la atmósfera recibe 333 w/m2, lo que suma 494 w/m2, como la superficie de la Tierra emite (o dicho de otra manera pierde) un total de 493 w/m2 (que se desglosan en 17 w/m2 de calor sensible, 80 w/m2 de calor latente de la evaporación del agua y 396 w/m2 de energía infrarroja), supone una absorción neta de calor de 0,9 w/m2, que en el tiempo actual está provocando el calentamiento de la Tierra.9
Efecto invernadero de varios gases de la atmósfera
Es el proceso por el que el aire retiene gran parte de la radiación infrarroja emitida por la Tierra, lo cual da origen a toda la compleja serie de fenómenos atmosféricos estudiados por la meteorología en detalle y a corto plazo, así como por la climatología a grandes rasgos y a largo plazo.
Aunque la atmósfera seca está compuesta prácticamente por nitrógeno (78,1%), oxígeno (20,9%) y argón (0,93%), son gases muy minoritarios en su composición como el dióxido de carbono(0,035%: 350 ppm), el ozono y otros los que desarrollan esta actividad radiativa. Además, la atmósfera contiene vapor de agua (1%: 10.000 ppm) que también es un gas radiativamente activo, siendo con diferencia el gas natural invernadero más importante. El dióxido de carbono ocupa el segundo lugar en importancia.4
La denominada curva Keeling muestra el continuo crecimiento de CO2 en la atmósfera desde 1958. Recoge las mediciones de Keeling en el observatorio del volcán Mauna Loa. Estas mediciones fueron la primera evidencia significativa del rápido aumento de CO2 en la atmósfera y atrajo la atención mundial sobre el impacto de las emisiones de los gases invernadero.10
El efecto invernadero es esencial para la vida del planeta: sin CO2 ni vapor de agua (sin el efecto invernadero) la temperatura media de la Tierra sería unos 33 °C menos, del orden de 18 °C bajo cero, lo que haría inviable la vida.11
Actualmente el CO2 presente en la atmósfera está creciendo de modo no natural por las actividades humanas, principalmente por la combustión de carbón, petróleo y gas natural que está liberando el carbono almacenado en estos combustibles fósiles y la deforestación de la selva pluvial que libera el carbono almacenado en los árboles, aunque sólo una pequeña parte del mismo ya que la mayor parte del carbono almacenado en los árboles queda en forma de madera, resinas o pasa a la atmósfera en forma de energía. Por tanto es preciso diferenciar entre el efecto invernadero natural del originado por las actividades de los hombres (o antropogénico).
La población se ha multiplicado y la tecnología ha alcanzado una enorme y sofisticada producción de forma que se está presionando muchas partes del medio ambiente terrestre siendo la Atmósfera la zona más vulnerable de todas por su delgadez. Dado el reducido espesor atmosférico la alteración de algunos componentes moleculares básicos que también se encuentran en pequeña proporción supone un cambio significativo. En concreto, la variación de la concentración de CO2, el más importante de los gases invernadero de la atmósfera.
Los gases invernadero permanecen activos en la atmósfera mucho tiempo, por eso se les denomina de larga permanencia. Eso significa que los gases que se emiten hoy permanecerán durante muchas generaciones produciendo el efecto invernadero. Así del CO2 emitido a la atmósfera: sobre el 50% tardará 30 años en desaparecer, un 30% permanecerá varios siglos y el 20% restante durará varios millares de años.12
La concentración de CO2 atmosférico se ha incrementado desde la época preindustrial (año 1.750) desde un valor de 280 ppm a 379 ppm en 2005. Se estima que 2/3 de las emisiones procedían de la quema de combustibles fósiles (petróleo, gas y carbón) mientras un 1/3 procede del cambio en la utilización del suelo (Incluida la deforestación). Del total emitido solo el 45% permanece en la atmósfera, sobre el 30% es absorbido por los océanos y el restante 25% pasa a la biosfera terrestre. Por tanto no solo la atmósfera está aumentando su concentración de CO2, también está ocurriendo en los océanos y en la biosfera.12  

Calentamiento Global






El calentamiento global es un término utilizado para referirse al fenómeno del aumento de la temperatura media global, de la atmósfera terrestre y de los océanos, que posiblemente alcanzó el nivel de calentamiento de la época medieval a mediados del siglo XX, para excederlo a partir de entonces.2
Todas las recopilaciones de datos representativas a partir de las muestras de hielo, los anillos de crecimiento de los árboles, etc., indican que las temperaturas fueron cálidas durante el Medioevo, se enfriaron a valores bajos durante los siglos XVII, XVIII y XIX y se volvieron a calentar después con rapidez.2 Cuando se estudia el Holoceno (últimos 11 600 años), el Panel Intergubernamental del Cambio Climático (IPCC) no aprecia evidencias de que existieran temperaturas medias anuales mundiales más cálidas que las actuales.2 Si las proyecciones de un calentamiento aproximado de 5 °C en este siglo se materializan, entonces el planeta habrá experimentado una cantidad de calentamiento medio mundial igual a la que sufrió al final de la Glaciación wisconsiense (último período glaciar); según el IPCC no hay pruebas de que la posible tasa de cambio mundial futuro haya sido igualada en los últimos 50 millones de años por una elevación de temperatura comparable.2
El calentamiento global está asociado a un cambio climático que puede tener causa antropogénica o no. El principal efecto que causa el calentamiento global es el efecto invernadero, fenómeno que se refiere a la absorción por ciertos gases atmosféricos—principalmente H2O, seguido por CO2 y O3—de parte de la energía que el suelo emite, como consecuencia de haber sido calentado por la radiación solar.3 El efecto invernadero natural que estabiliza el clima de la Tierra no es cuestión que se incluya en el debate sobre el calentamiento global. Sin este efecto invernadero natural las temperaturas caerían aproximadamente en unos 30 °C; con tal cambio, los océanos podrían congelarse y la vida, tal como la conocemos, sería imposible. Para que este efecto se produzca, son necesarios estos gases de efecto invernadero, pero en proporciones adecuadas. Lo que preocupa a los climatólogos es que una elevación de esa proporción producirá un aumento de la temperatura debido al calor atrapado en la baja atmósfera.
El IPCC sostiene que: «la mayoría de los aumentos observados en la temperatura media del globo desde la mitad del siglo XX, son muy probablemente debidos al aumento observado en las concentraciones de GEI antropogénicas».4 Esto es conocido como la teoría antropogénica, y predice que el calentamiento global continuará si lo hacen las emisiones de gases de efecto invernadero. En el último reporte con proyecciones de modelos climáticos presentados por IPCC, indican que es probable que temperatura global de la superficie, aumente entre 1,1 a 6,4 °C (2,0 a 11,5 °F) durante el siglo XXI.5
Se han propuesto varias medidas con el fin de mitigar el cambio climático, adaptarse a él o utilizar geoingeniería para combatir sus efectos. El mayor acuerdo internacional respectivo al calentamiento global ha sido el Protocolo de Kyoto, el cual tiene como objetivo la estabilización de la concentración de gases de efecto invernadero para evitar una "interferencia antropogénica peligrosa con el sistema climático".6 Fue adoptado durante Convención Marco de las Naciones Unidas sobre el Cambio Climático y promueve una reducción de emisiones contaminantes, principalmente CO2. Hasta noviembre de 2009, 187 estados han ratificado el protocolo.7 EE. UU., mayor emisor de gases de invernadero mundial,8 no ha ratificado el protocolo.
Más allá del consenso científico general en torno a la aceptación del origen principalmente antropogénico del calentamiento global, hay un intenso debate político sobre la realidad, de la evidencia científica del mismo. Por ejemplo, algunos de esos políticos opinan que el presunto consenso climático es una falacia.9